Category Archives: Analysis

Meaningful Requirements Start Successful Data Projects

To me, development projects fail or succeed in the first few weeks. Once a project starts off in the wrong direction, momentum and expectations tend to prevent a return to the proper path. With today’s wealth of database options each addressing exciting new possibilities, the right choice for the application’s data foundation plays a large part in steering a project to success.

At this year’s Enterprise Data World conference, William Brooks showed the relations among different data modeling approaches, in effect detailing how to derive nine different model types from a detailed conceptual entity relationship model. Mr Brooks’ presentation hinted at a way to correctly frame up your data direction early on in a project, setting the stage for success.

According to his presentation, called “Symmetry in Modeling Approaches“, the different model types — relational, graph, dimensional, JSON, XML, and so on — all represent different perspectives on the same data relationships. Each suits a different application, like dimensional for reporting applications, data vault for data warehouses, graph databases for multi-layered search, and so on. However, if properly constructed they all map back in predictable and specific ways to a normalized entity-relationship model.

I and others write that ER modeling should be integral to requirements definition, but Mr. Brooks’ presentation implies that ER modeling can also serve as the basis for application architecture as well. Continue reading

Start Data Quality Improvements with a New Definition

What is Data Quality anyway? If you are a data professional, I’m sure someone from outside our field has asked you that question, and if you’re like me you’ve fallen into the trap of answering in data-speak.

To my listener, I’d guess that the experience was similar to having a customer service rep who has just turned down his simple request justify it by describing byzantine company policies.

There’s a ton of great writing available on data quality, and I in no way mean to disparage it or its value in the field. But in that writing I’ve yet to find a concise and compelling definition that’s useful to non-data professionals. I’ll review one or two prevailing definitions and then offer one that could help us unlock real data quality improvements. Continue reading

The Practical Metadata Business Case

Even now the business case for a metadata tool seems unclear and difficult to quantify, but it isn’t impossible.

We in the data management business tend to devalue solutions that don’t clearly derive from a coherent top-level view. We seek applications defined from an enterprise architecture, database designs from an enterprise data model, and data elements consistent with the enterprise business glossary.

However, sometimes tactical gains make sense even when the big picture is missing, and tactical successes of metadata for analytics teams can raise consciousness that helps set the stage for evolving data management improvements. Continue reading

Tableau Rollout Across Five Dimensions

Standing up any new analytics tool in an organization is complex, and early on, new adopters of Tableau often struggle to include all the complexities in their plan. This post proposes a mental model in the form of a story of how Tableau might have rolled out in one hypothetical installation to uncover common challenges for new adopters.

Tableau’s marketing lends one to imagine that introducing Tableau is easy: “Fast Analytics”, “Ease of Use”, “Big Data, Any Data” and so on. (here, 3/31/2017). Tableau’s position in Gartner’s Magic Quadrant (referenced on the same page) attests to the huge upside for organizations that successfully deploy Tableau, which I’ve been lucky enough to witness firsthand. Continue reading

Analytics Requirements: Avoid a Y2.xK Crisis

Even though it happens annually, teams building new visualizations often forget to think about the effects of turning over from one year to another.

In today’s fast paced, Agile world, requirements for even the most critical dashboards and visualizations tend to evolve, and development often proceeds iteratively from a scratchpad sketch through successively more detailed versions to release of a “1.0” production version. Organized analytics teams evolve dashboards within a process framework that include checkpoints ensuring standards are met for security, reliability, usability, and so on.

A reporting team can build a revolutionary analytics capability enabling unprecedented visibility into operations, and then, if year turnover isn’t included in requirements, experience embarrassing errors and usability challenges in the January after initial deployment. In effect, the system experiences its own Y2.xK crisis, not too different from the expected Y2K crisis 16 years ago. Continue reading

Tableau Startup: First Lessons Learned

XAs I mentioned in the February post, I’m new to Tableau, and as the tone of that post implied,enjoying it very much. Tableau is a robust and flexible solution for data delivery. Like Qlikview, which I worked with a while ago, it is supported by outstanding, and free, introductory training and a very active user community.

As I’ve made my first steps in Tableau I’ve been a frequent user community visitor, and generally have gotten the answers I’ve been looking for. However, like any tool there still have been a few surprises. I’ll run down the top few in this post:

  • Measures can have complex logic
  • Big extracts are tricky
  • Changing data sources is really tricky
  • Sorry, there are some things you just can’t do

Hopefully this post helps other novices negotiate those first few steps a bit more easily. Continue reading

No Silver BI Bullet: Tableau Edition (It’s a good thing!)

For complex work, a very simple app requires a very smart user. That point was driven home to me in Tableau Fundamentals class this week. I don’t see that as bad news at all.

Not so long ago I wrote a piece that attempted to inject a bit of reality into the claims then made by some data visualization tool vendors. I cited unexpected challenges that those adopting such tools for their obvious and compelling data presentation abilities might face. The challenges included unexpectedly complex data integration, establishing solid reporting standards and practices, scaling report distribution as demand for the visualizations expands, and the conversion work that can result from version upgrades.

Although a Fundamentals class, the experienced and enthusiastic instructor and the small, intelligent student group combined to make the two days immensely valuable, going far beyond the basics on the program (more on specific lessons learned will appear in an upcoming post). The instructor’s focus on principles rather than recipes drove home this point: in order to effectively use Tableau you have to understand not only how to operate Tableau itself but also the underlying data management, usability, and statistics principles.

Could it be that adopting easy-to-use Tableau in place of, say, SSRS, Cognos, or SAS requires an upgrade in staff knowledge and expertise? Continue reading

Assumptions: A Key to Technical Leadership

DonkeyThere’s an unfortunate and rather rude saying about assumptions that I’ve found popular among IT folks I’ve worked with. I say unfortunate because, to me, assumptions that are recognized early and handled the right way are a key to successful projects. Technical players who use assumptions well can help set projects on the right path long before they go astray.

Sometimes on waterfall and hybrid projects technical players are asked to estimate work early, before requirements are complete. My instinctive reaction is not to provide an ungrounded estimate, but that’s not helpful. The way to handle this uncomfortable uncertainty is to fill out the unknowns with assumptions: detailed, realistic statements that provide grounding for your estimate. Continue reading

GIGO: Data Quality Guidelines for Application Development

There’s consensus among data quality experts that, generally speaking data quality is pretty much bad (here, here, and here). Data quality approaches generally focus on profiling, managing, and correcting data after it is already in the system. This makes sense in a daGIGOta science or warehousing context, which is often where quality problems surface. To quote William McKnight at the first of those sources:

“Data quality is no longer the domain of just the data warehouse. It is accepted as an enterprise responsibility. If we have the tools, experiences, and best practices, why, then, do we continue to struggle with the problem of data quality?”

So if the data quality problem is Garbage In Garbage Out (GIGO), then I would think that it would be easy to find data quality guidelines for app dev, and that those guidelines would be lightweight and helpful to those projects. Based on my research there are few to none such sources (please add them to the comments if you find otherwise).

So, all that said here’s my cut at app dev data quality guidelines by project activity: Continue reading

Get Business Requirements Right by Resolving Many-to-Manys

Logical data modeling is one of my tools of choice in business analysis and requirements definition. That’s not particularly unusual – the BABOK (Business Analysis Body of Knowledge) recognizes the Entity-Relationship Diagram (ERD) as a business analysis tool, and for many organizations it’s a non-optional part of requirements document templates.

In practice, however, data models in requirements packages often include many-to-many relationships. I’ve heard experienced data modelers advocate this practice, and it unfortunately seems consistent with the “just enough, just in time” approach associated with agile culture.

In my experience unresolved M:M relationships indicate equally unresolved business questions. The result: schedule delays and budget overruns as missed requirements are built back in to the design, or the familiar “that’s not what we wanted” reaction during User Acceptance Testing (UAT). Continue reading