Bob Lambert

Chromatic and Diatonic Harmonicas

Tag: Alignment

  • A New Direction for Data at #EDW17

    Obviously, data management is important. Unfortunately, it is not prioritized in most organizations. Those that effectively manage data perform far better than organizations that don’t. Everyone who needs data to do his/her job must drive change to improve data management. That was the theme of the recent Enterprise Data World (EDWorld) conference this week. This year’s EDWorld event might be the…

    continue reading

  • Analytics Requirements: Avoid a Y2.xK Crisis

    Even though it happens annually, teams building new visualizations often forget to think about the effects of turning over from one year to another. In today’s fast paced, Agile world, requirements for even the most critical dashboards and visualizations tend to evolve, and development often proceeds iteratively from a scratchpad sketch through successively more detailed…

    continue reading

  • Levels of Trust in Data Governance: It’s Not All or Nothing

    The term “trust” implies absolutes, and that’s a good thing for relationships and art. However, in the business of data management, framing trust in data in true or false terms puts data governance at odds with good practice. A more nuanced view that recognizes the usefulness of not-fully-trusted data can bring vitality and relevance to…

    continue reading

  • Five Thoughts On Data Management Maturity

    Recently I’ve had the opportunity to dig deeply into the CMMI Data Management Maturity model. Since its release, the DMM model has emerged as the de facto standard data management maturity framework (I’ve listed other frameworks at the end of this post). I’m deeply impressed by the completeness and polish of the DMM model as…

    continue reading

  • No More Enterprise Data Sinks – An Agile Data Warehousing Manifesto

    Over the past year I’ve reviewed what seem like countless plans for enterprise data warehouses. The plans address real problems in the organizations involved: the organization needs better data to recognize trends and react faster to opportunities and challenges; business measures and analyses are unavailable because data in source systems is inconsistent, incomplete, erroneous, or…

    continue reading

  • Assumptions: A Key to Technical Leadership

    There’s an unfortunate and rather rude saying about assumptions that I’ve found popular among IT folks I’ve worked with. I say unfortunate because, to me, assumptions that are recognized early and handled the right way are a key to successful projects. Technical players who use assumptions well can help set projects on the right path…

    continue reading

  • Manage DATA, People, Process, and Technology

    A quick Google search seems to reveal if you manage People, Process, and Technology you’ve got everything covered. That’s simply not the case. Data is separate and distinct from the things it describes — namely people, processes, and technologies — and organizations must separately and intentionally manage it. The data management message seems a tough…

    continue reading

  • Lynchburg SQL Server User’s Group 10/30

    Yesterday I had the pleasure of presenting “The Business End of Data Modeling” for the Lynchburg SQL Server User’s Group. It was a great time, thanks for having me out! I’ve linked the presentation below, please comment here or shoot me an email if you have comments or questions. BusinessEndOfDataModeling20141030

    continue reading

  • Requirements Half-Life

    I had pondered writing a post called “Requirements Decay” about how requirements don’t last forever. In my research I found that such a post, complete with “my” words “requirements decay” and “requirements half-life”, had already been done comprehensively here. In a compact argument underpinned by half-life mathematics, the anonymous author proposes that a requirement isn’t likely…

    continue reading

  • Guiding Principles for Data Enrichment

    The data integration process is traditionally thought of in three steps: extract, transform, and load (ETL). Putting aside the often-discussed order of their execution, “extract” is pulling data out of a source system, “transform” means validating the source data and converting it to the desired standard (e.g. yards to meters), and load means storing the…

    continue reading