Tag Archives: Business Intelligence

More on “Select Failed. [2646] No more spool space”

Also see the previous related post Escaping Teradata Purgatory (Select Failed. [2646] No more spool space)

Not too long ago I posted on how to avoid the dreaded “No more spool space” error in Teradata SQL. That post recounted approaches to restructuring SQL queries so that they would avoid being cancelled for using inordinate amounts of Teradata resources. Teradata is an immensely powerful, even if aging, database engine but it does little to help one not steeped in knowledge of its structure to use its resources efficiently.

But what if, as sometimes happens, your DB admin team further tightens the screws by  reducing spool space, or imposing new execution time or CPU usage limits? Then, you’ll have to go further to make queries efficient, as happened on one team that I was a part of. Beyond the steps previously recommended, here’s what we did: Continue reading

How to be a good client


I recently listened to Brian O’Neill’s excellent interview with Tom Davenport, headlined “Why on a scale of 1-10, the field of analytics has only gone from a one to about a two in ten years time.”

The conversation covered a lot of ground as Mr O’Neill and Mr Davenport explored the reasons why. Highlights included general lack of technical literacy and lack of an organizational data driven culture. But to their credit, they took responsibility on behalf of analytics professionals, emphasizing how we in the field could change in order to make more analytics efforts successful. Rather than focusing on providing technology-centered solutions, they recommended that data and AI professionals seek first to understand and empathize with their clients or internal customers, enabling data and AI pros to develop more effective analytics capabilities in light of that understanding.

I agree that analytics professionals can improve their game. However, as a former consultant who’s switched over to the client side, I think there’s room for improvement all around. To me, clients who work proactively to prepare for an analytics project position themselves for better outcomes. Continue reading

Leader’s Data Manifesto at #EDW19: Building a Foundation for Data Science

It’s been a truism that data is a resource, but to prove it you just have to follow the money. As the illustration shows, the vast majority of corporate market value draws from intangible assets. Just as money is an abstraction that represents wealth, data is an abstraction that represents these intangible assets.

It’s year three after initial rollout of the Leader’s Data Manifesto (LDM). Since then, many widely publicized events have highlighted the value of data and metadata, and the importance of sound data management (here, here, and here). Recently at Enterprise Data World, John Ladley, Danette McGilvray, James Price, and Tom Redman presented this year’s LDM update. They reintroduced the Manifesto, recounted events of the past year, discussed strategy for the coming year, and issued a call to action for data professionals. Continue reading

Enterprise Data Prep for Analytics: Two Principles

Data scientists spend most of their time doing data integration rather than gathering insights. In my interview with data scientist Yan Li, she said that data collection and prep takes at least 70% of her time. Obviously, there’s a lot of integration work to do on data that’s new to analytics efforts, but not every analysis uses brand new data. Organizations can improve analytics efficiency by staging commonly used data pre-integrated for data science.

For years, large organizations have supported data warehouses, but prevailing data warehousing practices often fail when faced with “big data” volume and velocity. Still, warehousing teams in large organizations can pre-prep frequently-used internal data. Examples include reference and master data, production and sales records, and so on.    Continue reading

Toward an Analytics Code of Ethics

In data management and analytics, we often focus on correcting apparent inability and unwillingness on the part of business leaders to effectively gather and capitalize on data resources. With that perspective, we often see ethics as a side issue difficult to prioritize given the scale and persistence of our other challenges.

At least that was my perspective, and my initial response when confronted recently by a family member on this topic. Her view from outside the field was that ethics should be a primary concern. As I’ve reflected on this conversation, I’ve come around to her point.

In recent years we’ve seen many examples of data misuse due to ethical lapses. Here’s a post that gives five examples, including police officers looking up data on individuals not related to any police business, an employee passing personal data including SSNs to a text sharing site, and Uber’s “god view”, available at the corporate level, which an employee used in 2014 to track a journalist’s location. Continue reading

Start Data Quality Improvements with a New Definition

What is Data Quality anyway? If you are a data professional, I’m sure someone from outside our field has asked you that question, and if you’re like me you’ve fallen into the trap of answering in data-speak.

To my listener, I’d guess that the experience was similar to having a customer service rep who has just turned down his simple request justify it by describing byzantine company policies.

There’s a ton of great writing available on data quality, and I in no way mean to disparage it or its value in the field. But in that writing I’ve yet to find a concise and compelling definition that’s useful to non-data professionals. I’ll review one or two prevailing definitions and then offer one that could help us unlock real data quality improvements. Continue reading

Sound Data Culture Enables Modern Data Architectures

Modern data architectures, by enabling data analytics insights, promise to drive order of magnitude value gains across many business sectors (here, here, and here). Not so long ago, big data presented a daunting challenge. Although tools were plentiful, we struggled to conceptualize the architecture and organization within which to capitalize on those tools. Now solid frameworks have emerged. This post reviews two promising models for modern data architecture, and discusses two key cultural values critical to their successful adoption: drive to solve business challenges and drive for universal data correctness. Continue reading

Fixing Tableau Desktop Blue Screen or Unresponsive

Tableau desktop (10.2.2 on Windows 7 at work) was consistently locking up my computer or causing a BSOD when I tried to start it. After struggling for a while trying to solve the problem, I found out it was because it used all resources when opening the log file, which had over time grown to 24gig. Apparently my version of Tableau desktop doesn’t periodically clean up the log files.

However, if the …/Logs folder isn’t there at Tableau startup, it just builds a new one and starts fresh, so whenever Tableau isn’t running you can just delete it. So, to make that happen automatically, I’ve added a batch file with these commands to my startup folder: Continue reading

Leader’s Data Manifesto Annual Review: “It’s About the Lopez Women”

A year ago I recounted proceedings from the 2017 EDW World conference, which included release of the Leader’s Data Manifesto (LDM). Last week’s EDW World 2018 served as a one-year status report on the Manifesto. The verdict: there’s still a long way to go, but speakers and attendees report dramatic progress and emergence of shared values supporting data management’s role in enabling success and reducing risk.

To me the most compelling example of progress was the story of the Lopez women, told by Tommie Lawrence, who leads patient data quality efforts at Sharp Healthcare, a major San Diego, Ca, healthcare network. Ms. Lawrence’s team is responsible for data quality related to about six million patient records in the 40 highest priority of Sharp’s ~400 systems containing Patient Health Information (PHI).

A few years ago, Sharp Healthcare had two patients named Maria Lopez*, with birthdays one day apart. One suffered from kidney disease, the other had cancer. After a long wait a kidney was found, and the hospital called the Maria with kidney disease and asked her to come to the hospital for a transplant immediately. During operation prep, an assistant noticed that Maria had cancer, and put a halt to proceedings – it didn’t make sense to give the kidney to someone with cancer. Continue reading

The PDDQ Framework: Lean Data Quality for Patient Records

For most of us it may have slipped under the radar, but in December a groundbreaking Patient Demographic Data Quality framework was jointly released by a US government agency and the CMMI Institute.

In response to findings that many “safety-related events were caused by or related to incorrect patient identification”, the Office of the National Coordinator for Health Information Technology (ONC) worked with CMMI to develop the PDDQ Framework in order help organizations implement effective, sustainable data management practices around patient data management. 

Groundbreaking? Yes. As a lean framework appropriate for small business the PDDQ shows how you can rightsize the Data Management Maturity Model to match your situation. That it is freely available demonstrates CMMI’s commitment to improving data quality in healthcare. Continue reading