

MANAGING TECHNOLOGY, DRIVING RESULTS.

Pretty Good Row Level Security

Bob Lambert Nic Morel

1419 West Main Street, Richmond, VA 23220 www.captechventures.com ©2008 CapTech Ventures, Inc. // All Rights Reserved.

Proprietary and Confidential - CapTech Ventures 2008 ©

Table of Contents

- Evolution of Data Security
- New Challenges
- Securing both code and data
- Row Level Security
- Generic example
- Adventure Works
 - Example 1
 - Example 2
- Conclusion

The evolution of data security is not over

Complex architectures

- 1970 Democratization of the Mainframe
- 1980 2 tier applications relying on Mainframe
- 1990 3 tier applications with multiple databases (introduction of EAI middlewares)
- First IT generation
 - First IT professional with 100% of carrier in IT are retiring now
- □ New public / end users with new channels
 - Human to Human
 - Kiosk and Voice Response Unit to Humans, Corporate servers to others (APIs)
 - Internet to Humans
 - Phones, etc to Humans

Proprietary and Confidential – CapTech Ventures 2008 @

New challenges are still coming

Shared infrastructure

- Mainframes to multiple users
- Multi-tiers applications create Identity Management challenges
- Data accessed by Internet Users
 - First, public information to the public (ex: corp websites)
 - Private information to customers / patients (ex: MyUHC.com)
 - Private information to public (ex: mypace)
- Outsourced IT can create risks for corporations
 - Longer lifespan of applications
 - High turnover of IT professional

Securing code and data

- □ First, Security is at the application level
 - Introduction of RACF and ACF2 limits access to screens
- Second, secured object oriented coding
 - Security is at the object level
 - Users and systems have access to objects
- □ Third, secured data repositories
 - System IDs limit read / write to entire tables, even columns

Do we need more data Security?

Well what if...

• We could limit access at the data level?

- We could have a solution that leverages existing and simple database protocols?
- We did not need to add another complex layer of security that will require resources to administer?

DAND

What is Row Level Security?

- One definition
 - A method of providing another level of access security in a database by exploiting existing business data
- Row Level Security is not new.
 - Oracle provides RLS as a feature (Labels Security)
 - PeopleSoft has embedded features for RLS
 - Business Objects has numerous white papers
- This presentation explores a generic way of implementing RLS by
 - Restricting user access to data based on data in the row,
 - Keeping the content of business tables unchanged
 - Not affecting application or presentation developers regardless of how users access the data.

Alternative Row Level Security Solutions

Available approaches don't meet our requirements. For example:

- "Implementing Row Level Security in SQL Server Databases" by Narayana Vyas Kondreddii recommends addition of user id as a column on secure tables.
 - http://vyaskn.tripod.com/row_level_security_in_sql_server_databases.htm
- Rask, Rubin, and Neumann offer on the Microsoft Technet site a solution based on defining views that again requires base table modifications.
 - http://www.microsoft.com/technet/prodtechnol/sql/2005/multisec.mspx#E3MAC
- Kemal Erdogan presents a promising solution based on lookup tables. That doesn't require base table changes but leaves the tables unsecured in the case or direct user database access.
 - http://www.codeproject.com/KB/database/AFCAS.aspx

Provisos and Quid Pro Quos

- □ SQL Server database (MS SQL Server 2000, 2005, or 2008)
- An attribute exists in common to all tables to be secured that makes sense as a determinant of who sees what data (in the example, department id)
- Application calls passed to the database are secured by individual user id, not by a single admin user id
- We'll show only Select security; the concept can be extended to cover Update and Insert statements
- **The solution presented is not optimized**
 - Performance in your environment will depend on its unique characteristics

Proprietary and Confidential – CapTech Ventures 2008 ©

Generic Example: SQL Server Table Definition (Slide 1 of 3)

Overall Approach: add a cross reference table that links userids to the security attributes.

Proprietary and Confidential - CapTech Ventures 2008 ©

Generic Example: SQL Server Table Definition (Slide 2 of 3)

Creating an RLS function step 1: Protect data with Table Valued Functions requiring

```
CREATE FUNCTION [adhoc].[u_GetOrderSummary] ()
RETURNS TABLE
AS
RETURN
(
   SELECT OrderCount, Receipts
    FROM dbo.GetOrderSummary(Current_User)
)
```

The problem: the user could key any user's id as a parameter to circumvent security

Generic Example: SQL Server Table Definition (Slide 3 of 3)

A solution: Prevent user logins to the application database, but enable them to a separate database that contains table valued functions that call those requiring user ids as parameters, as follows:

```
CREATE FUNCTION [adhoc].[u_GetOrderSummary] ()
RETURNS TABLE
AS
RETURN
(
SELECT OrderCount, Receipts
FROM dbo.GetOrderSummary(Current_User)
```


RLS in a reasonably complex database: The Adventure Works Examples

- The database Adventure Works is shipped in every MS SQL server application as an example.
 - It represents a company called Adventure Works
 - Business processes are all modeled and include (and is not limited to):
 - Sales
 - Production
 - HR
 - Ordering
- Two examples of Adventure Works RLS have been developed:
 - A sales person can only sell in his/her territory
 - HR professionals can only see data for employees in their assigned departments

A sales person can only sell in his/her territory (Slide 1 of 4): The Problem and Strategy

- □ What we are trying to solve:
 - Right now, all Sales resources perform a sale in every territory.
 - The new rule is that one can only sale in its own territory
- What we are going to do:
 - We create a function that links user ID to the Territory
 - We create a view to prevent the user from inserting a different user ID than his

A sales person can only sell in his/her territory (Slide 2 of 4): The Data Model

CapTech

p.15

Proprietary and Confidential - CapTech Ventures 2008 ©

A sales person can only sell in his/her territory (Slide 3 of 4) The Function

```
INNER JOIN [Sales]. [SalesOrderHeader] soh
-- based on Sales.vSalesPersonSalesByFiscalYears
                                                                                ON sp. [SalesPersonID] = soh. [SalesPersonID]
                                                                                                 INNER JOIN [Sales]. [SalesTerritory] st
TABLE VALUED FUNCTION
                                                                                                 ON sp. [TerritoryID] = st. [TerritoryID]
CREATE FUNCTION [Security].[ufnGetSalesTotals]
                                                                                                 INNER JOIN Security.SalesAccess sa
                                                                                                 ON sa.TerritoryID = st.[TerritoryID]
       @UserId VARCHAR(20)
                                                                                                 AND sa.UserId = @UserID
                                                                                                 INNER JOIN [HumanResources]. [Employee] e
RETURNS TABLE
                                                                                                 ON soh. [SalesPersonID] = e. [EmployeeID]
AS
                                                                                                 INNER JOIN [Person].[Contact] c
RETURN
(
                                                                                                 ON e. [ContactID] = c.ContactID
SELECT
                                                                                ) AS soh
       pvt.[SalesPersonID]
                                                              PIVOT
       ,pvt.[FullName]
       ,pvt.[Title]
                                                                                SUM([SubTotal])
       ,pvt.[SalesTerritory]
                                                                                FOR [FiscalYear]
       ,pvt.[2002]
                                                                                IN ([2002], [2003], [2004])
       ,pvt. [2003]
                                                              ) AS pvt
       ,pvt.[2004]
       FROM (SELECT
               soh.[SalesPersonID]
                ,c.[FirstName]
                               + 1 1
                               + COALESCE(c.[MiddleName],
       11)
                               + 1 1
                               + c.[LastName] AS
       [FullName]
               ,e.[Title]
                ,st.[Name] AS [SalesTerritory]
                .soh.[SubTotal]
                , YEAR (DATEADD (m, 6, soh. [OrderDate]))
                               AS [FiscalYear]
               FROM [Sales].[SalesPerson] sp
```


p.16

A sales person can only sell in his/her territory (Slide 4 of 4) Securing with a view

□ The Secure View

CREATE VIEW [Security].[vsSalesTotals] AS SELECT [SalesPersonID]

,[FullName]

,[Title]

```
,[SalesTerritory]
```

,[2002]

,[2003]

,[2004]

FROM Security.ufnGetSalesTotals(USER)

p.17

HR professionals can only see data for employees in their assigned departments (Slide 1 of 4): The Problem and Strategy

- □ What we are trying to solve:
 - Right now, all HR employees have access to all employee data.
 - We want to limit them and assigned them to specific departments
- What we are going to do:
 - We create a function that links user ID to the Territory
 - We create a view to prevent the user from inserting a different user ID than his

HR professionals can only see data for employees in their assigned departments (Slide 2 of 4): The Data Model

CapTech

Proprietary and Confidential - CapTech Ventures 2008 ©

HR professionals can only see data for employees in their assigned departments (Slide 3 of 4) The Function

	, sp. [Name] AS [StateProvinceName]
based on HumanResources.vEmployee	,a.[PostalCode]
	<pre>/ cr.[Name] AS [CountryRegionName]</pre>
CREATE FUNCTION [Security].[ufnGetEmployeeData]	<pre>,c.[AdditionalContactInfo]</pre>
	FROM [HumanResources].[Employee] e
BURCHTA WARCHAR (20)	INNER JOIN [Person].[Contact] c
(USELLA VARCHAR(20)	ON c. [ContactID] = e. [ContactID]
	INNER JOIN [HumanResources]. [EmployeeAddress] ea
RETURNS TABLE	ON e.[EmployeeID] = ea.[EmployeeID]
AS	INNER JOIN [Person]. [Address] a
RETURN	ON ea. [AddressID] = a. [AddressID]
	INNER JOIN [Person]. [StateProvince] sp
, Set ech	UNISP. [StateProvinceID] = a. [StateProvinceID]
SELECI	ON gr [CountryRegion] cr
e.[EmployeelD]	= sp [CountryRegionCode]
,c.[Title]	INNER JOIN
,c.[FirstName]	HumanResources.EmployeeDepartmentHistory edh
,c.[MiddleName]	ON edh.EmployeeID = e.EmployeeID
.c.[LastName]	AND edh.EndDate is null
c [Suffix]	INNER JOIN Security.HRAccess shr
	ON shr.DepartmentID = edh.DepartmentID
,e.[Title] AS [JODTITLE]	AND shr.UserID = @UserID
,edh.DepartmentID	INNER JOIN HumanResources.Department dpt
,dpt.Name AS [DepartmentName]	ON dpt.DepartmentID = edh.DepartmentID
,shr.UserID	
,c.[Phone]	
.c.[EmailAddress]	
c [EmailPromotion]	
, a. [AddressLinei]	
,a.[AddressLine2]	
,a.[City]	

E 3.7

FOR the Design of the second s

CapTech

HR professionals can only see data for employees in their assigned departments (Slide 4 of 4): Securing with a view

```
CREATE VIEW [Security].[vsEmployee]
AS
SELECT
```

- [EmployeeID]
- [FirstName]
- ,[LastName]
- ,[JobTitle]
- ,[DepartmentName], UserID
- [Phone]
- [EmailPromotion]
- [AddressLine2]
- ,[StateProvinceName] ,[PostalCode]

- ,[Title]
- ,[MiddleName]
- [Suffix]
- ,DepartmentID
- [EmailAddress]
- ,[AddressLine1]
- [City]
- ,[CountryRegionName] ,[AdditionalContactInfo]

FROM Security.ufnGetEmployeeData(USER)

p.21

Summary

- RLS allowed us to add security controls and implement business rules on existing databases
 - The overall structure of the database stays unchanged
 - Cost of developments are low
 - Functions can be reused for future developments
- Other possible enhancements
 - Add a audit functionality: create a log of who tried to access which data and at what time (Sarbox, HIPAA and regulatory requirements)
 - Link to an LDAP like Active Directory for permanent business or security requirements

