
Proprietary and Confidential – CapTech Ventures 2008 ©

1419 West Main Street, Richmond, VA 23220

www.captechventures.com

©2008 CapTech Ventures, Inc. // All Rights Reserved.

Pretty Good Row Level Security

Bob Lambert

Nic Morel

p.1

Proprietary and Confidential – CapTech Ventures 2008 ©

Table of Contents

 Evolution of Data Security

 New Challenges

 Securing both code and data

 Row Level Security

 Generic example

 Adventure Works

 Example 1

 Example 2

 Conclusion

p.2

Proprietary and Confidential – CapTech Ventures 2008 ©

The evolution of data security is not over

 Complex architectures

 1970 – Democratization of the Mainframe

 1980 – 2 tier applications relying on Mainframe

 1990 – 3 tier applications with multiple databases (introduction of EAI middlewares)

 First IT generation

 First IT professional with 100% of carrier in IT are retiring now

 New public / end users with new channels

 Human to Human

 Kiosk and Voice Response Unit to Humans, Corporate servers to others (APIs)

 Internet to Humans

 Phones, etc to Humans

p.3

Proprietary and Confidential – CapTech Ventures 2008 ©

New challenges are still coming

 Shared infrastructure

 Mainframes to multiple users

 Multi-tiers applications create Identity Management challenges

 Data accessed by Internet Users

 First, public information to the public (ex: corp websites)

 Private information to customers / patients (ex: MyUHC.com)

 Private information to public (ex: mypace)

 Outsourced IT can create risks for corporations

 Longer lifespan of applications

 High turnover of IT professional

p.4

Proprietary and Confidential – CapTech Ventures 2008 ©

Securing code and data

 First, Security is at the application level

 Introduction of RACF and ACF2 limits access to screens

 Second, secured object oriented coding

 Security is at the object level

 Users and systems have access to objects

 Third, secured data repositories

 System IDs limit read / write to entire tables, even columns

Do we need more data Security?

p.5

Proprietary and Confidential – CapTech Ventures 2008 ©

Well what if…

 We could limit access at the data level?

 We could have a solution that leverages existing and simple database

protocols?

 We did not need to add another complex layer of security that will

require resources to administer?

 We could use a technique that will be impermeable to IT Staff changes

and won’t slow down upgrade projects?

Proprietary and Confidential – CapTech Ventures 2008 ©

What is Row Level Security?

 One definition

 A method of providing another level of access security in a database by exploiting

existing business data

 Row Level Security is not new.

 Oracle provides RLS as a feature (Labels Security)

 PeopleSoft has embedded features for RLS

 Business Objects has numerous white papers

 This presentation explores a generic way of implementing RLS by

 Restricting user access to data based on data in the row,

 Keeping the content of business tables unchanged

 Not affecting application or presentation developers regardless of how users access

the data.

p.7

Proprietary and Confidential – CapTech Ventures 2008 ©

Alternative Row Level Security Solutions

Available approaches don’t meet our requirements. For example:

 “Implementing Row Level Security in SQL Server Databases” by

Narayana Vyas Kondreddii recommends addition of user id as a column

on secure tables.

 http://vyaskn.tripod.com/row_level_security_in_sql_server_databases.htm

 Rask, Rubin, and Neumann offer on the Microsoft Technet site a

solution based on defining views that again requires base table

modifications.

 http://www.microsoft.com/technet/prodtechnol/sql/2005/multisec.mspx#E3MAC

 Kemal Erdogan presents a promising solution based on lookup tables.

That doesn’t require base table changes but leaves the tables

unsecured in the case or direct user database access.

 http://www.codeproject.com/KB/database/AFCAS.aspx

p.8

http://vyaskn.tripod.com/row_level_security_in_sql_server_databases.htm
http://www.microsoft.com/technet/prodtechnol/sql/2005/multisec.mspx
http://www.codeproject.com/KB/database/AFCAS.aspx

Proprietary and Confidential – CapTech Ventures 2008 ©

Provisos and Quid Pro Quos

 SQL Server database (MS SQL Server 2000, 2005, or 2008)

 An attribute exists in common to all tables to be secured that makes

sense as a determinant of who sees what data (in the example,

department id)

 Application calls passed to the database are secured by individual user

id, not by a single admin user id

 We’ll show only Select security; the concept can be extended to cover

Update and Insert statements

 The solution presented is not optimized

 Performance in your environment will depend on its unique characteristics

p.9

Proprietary and Confidential – CapTech Ventures 2008 ©

Generic Example:
SQL Server Table Definition (Slide 1 of 3)

 Overall Approach: add a cross reference table that links userids to the

security attributes.

User Access

PK UserID

PK Department

Orders

PK OrderID

 CustomerName

 OrderTotal

 Department

Departments

PK Department

 ParentDepartment

p.10

Proprietary and Confidential – CapTech Ventures 2008 ©

Generic Example:
SQL Server Table Definition (Slide 2 of 3)

 Creating an RLS function step 1: Protect data with Table Valued

Functions requiring
CREATE FUNCTION [adhoc].[u_GetOrderSummary] ()

RETURNS TABLE

AS

RETURN

(

SELECT OrderCount, Receipts

FROM dbo.GetOrderSummary(Current_User)

)

 The problem: the user could key any user’s id as a parameter to

circumvent security

p.11

Proprietary and Confidential – CapTech Ventures 2008 ©

Generic Example:
SQL Server Table Definition (Slide 3 of 3)

 A solution: Prevent user logins to the application database, but enable

them to a separate database that contains table valued functions that

call those requiring user ids as parameters, as follows:

CREATE FUNCTION [adhoc].[u_GetOrderSummary] ()

RETURNS TABLE

AS

RETURN

(

SELECT OrderCount, Receipts

FROM dbo.GetOrderSummary(Current_User)

)

p.12

Proprietary and Confidential – CapTech Ventures 2008 ©

RLS in a reasonably complex database:
The Adventure Works Examples

 The database Adventure Works is shipped in every MS SQL server

application as an example.

 It represents a company called Adventure Works

 Business processes are all modeled and include (and is not limited to):

● Sales

● Production

● HR

● Ordering

 Two examples of Adventure Works RLS have been developed:

 A sales person can only sell in his/her territory

 HR professionals can only see data for employees in their assigned departments

p.13

Proprietary and Confidential – CapTech Ventures 2008 ©

A sales person can only sell in his/her territory
(Slide 1 of 4): The Problem and Strategy

 What we are trying to solve:

 Right now, all Sales resources perform a sale in every territory.

 The new rule is that one can only sale in its own territory

 What we are going to do:

 We create a function that links user ID to the Territory

 We create a view to prevent the user from inserting a different user ID than his

p.14

Proprietary and Confidential – CapTech Ventures 2008 ©

A sales person can only sell in his/her territory
(Slide 2 of 4): The Data Model

p.15

Proprietary and Confidential – CapTech Ventures 2008 ©

A sales person can only sell in his/her territory
(Slide 3 of 4) The Function

-- based on Sales.vSalesPersonSalesByFiscalYears

TABLE VALUED FUNCTION

CREATE FUNCTION [Security].[ufnGetSalesTotals]

(

@UserId VARCHAR(20)

)

RETURNS TABLE

AS

RETURN

(

SELECT

pvt.[SalesPersonID]

,pvt.[FullName]

,pvt.[Title]

,pvt.[SalesTerritory]

,pvt.[2002]

,pvt.[2003]

,pvt.[2004]

FROM (SELECT

soh.[SalesPersonID]

,c.[FirstName]

+ ' '

+ COALESCE(c.[MiddleName],

'')

+ ' '

+ c.[LastName] AS

[FullName]

,e.[Title]

,st.[Name] AS [SalesTerritory]

,soh.[SubTotal]

,YEAR(DATEADD(m, 6, soh.[OrderDate]))

AS [FiscalYear]

FROM [Sales].[SalesPerson] sp

INNER JOIN [Sales].[SalesOrderHeader] soh

ON sp.[SalesPersonID] = soh.[SalesPersonID]

INNER JOIN [Sales].[SalesTerritory] st

ON sp.[TerritoryID] = st.[TerritoryID]

INNER JOIN Security.SalesAccess sa

ON sa.TerritoryID = st.[TerritoryID]

AND sa.UserId = @UserID

INNER JOIN [HumanResources].[Employee] e

ON soh.[SalesPersonID] = e.[EmployeeID]

INNER JOIN [Person].[Contact] c

ON e.[ContactID] = c.ContactID

) AS soh

PIVOT

(

SUM([SubTotal])

FOR [FiscalYear]

IN ([2002], [2003], [2004])

) AS pvt

)

p.16

Proprietary and Confidential – CapTech Ventures 2008 ©

A sales person can only sell in his/her territory
(Slide 4 of 4) Securing with a view

 The Secure View

CREATE VIEW [Security].[vsSalesTotals]

AS

SELECT

[SalesPersonID]

,[FullName]

,[Title]

,[SalesTerritory]

,[2002]

,[2003]

,[2004]

FROM Security.ufnGetSalesTotals(USER)

p.17

Proprietary and Confidential – CapTech Ventures 2008 ©

HR professionals can only see data for employees in
their assigned departments (Slide 1 of 4): The Problem
and Strategy

 What we are trying to solve:

 Right now, all HR employees have access to all employee data.

 We want to limit them and assigned them to specific departments

 What we are going to do:

 We create a function that links user ID to the Territory

 We create a view to prevent the user from inserting a different user ID than his

p.18

Proprietary and Confidential – CapTech Ventures 2008 ©

HR professionals can only see data for employees in their
assigned departments (Slide 2 of 4): The Data Model

p.19

Proprietary and Confidential – CapTech Ventures 2008 ©

HR professionals can only see data for employees in
their assigned departments
(Slide 3 of 4) The Function

-- based on HumanResources.vEmployee

CREATE FUNCTION [Security].[ufnGetEmployeeData]

(

@UserId VARCHAR(20)

)

RETURNS TABLE

AS

RETURN

(

SELECT

e.[EmployeeID]

,c.[Title]

,c.[FirstName]

,c.[MiddleName]

,c.[LastName]

,c.[Suffix]

,e.[Title] AS [JobTitle]

,edh.DepartmentID

,dpt.Name AS [DepartmentName]

,shr.UserID

,c.[Phone]

,c.[EmailAddress]

,c.[EmailPromotion]

,a.[AddressLine1]

,a.[AddressLine2]

,a.[City]

,sp.[Name] AS [StateProvinceName]

,a.[PostalCode]

,cr.[Name] AS [CountryRegionName]

,c.[AdditionalContactInfo]

FROM [HumanResources].[Employee] e

INNER JOIN [Person].[Contact] c

ON c.[ContactID] = e.[ContactID]

INNER JOIN [HumanResources].[EmployeeAddress] ea

ON e.[EmployeeID] = ea.[EmployeeID]

INNER JOIN [Person].[Address] a

ON ea.[AddressID] = a.[AddressID]

INNER JOIN [Person].[StateProvince] sp

ON sp.[StateProvinceID] = a.[StateProvinceID]

INNER JOIN [Person].[CountryRegion] cr

ON cr.[CountryRegionCode]

= sp.[CountryRegionCode]

INNER JOIN

HumanResources.EmployeeDepartmentHistory edh

ON edh.EmployeeID = e.EmployeeID

AND edh.EndDate is null

INNER JOIN Security.HRAccess shr

ON shr.DepartmentID = edh.DepartmentID

AND shr.UserID = @UserID

INNER JOIN HumanResources.Department dpt

ON dpt.DepartmentID = edh.DepartmentID

p.20

Proprietary and Confidential – CapTech Ventures 2008 ©

HR professionals can only see data for employees in
their assigned departments
(Slide 4 of 4): Securing with a view

CREATE VIEW [Security].[vsEmployee]

AS

SELECT

[EmployeeID] ,[Title]

,[FirstName] ,[MiddleName]

,[LastName] ,[Suffix]

,[JobTitle] ,DepartmentID

,[DepartmentName] ,UserID

,[Phone] ,[EmailAddress]

,[EmailPromotion] ,[AddressLine1]

,[AddressLine2] ,[City]

,[StateProvinceName] ,[PostalCode]

,[CountryRegionName] ,[AdditionalContactInfo]

FROM Security.ufnGetEmployeeData(USER)

p.21

Proprietary and Confidential – CapTech Ventures 2008 ©

Summary

 RLS allowed us to add security controls and implement business rules

on existing databases

 The overall structure of the database stays unchanged

 Cost of developments are low

 Functions can be reused for future developments

 Other possible enhancements

 Add a audit functionality: create a log of who tried to access which data and at what

time (Sarbox, HIPAA and regulatory requirements)

 Link to an LDAP like Active Directory for permanent business or security requirements

p.22

