Tag: Data Quality
-
One More Species of Overloaded Data
A while back I wrote the post A Field Guide to Overloaded Data, which publicized the work of Duane Hufford, who examined different types of overloaded data during the 1990s. Over the years his classifications of overloaded data effectively categorized data anomalies I encountered in the wild. That is until recently, when a colleague encountered…
-
Reengineered Processes Need Business-Defined Data
“Business process reengineering is the act of recreating a core business process with the goal of improving product output, quality, or reducing costs.”* Recently I’ve perused articles on business process reengineering and have been surprised to find that they share a lack of emphasis on data definition. By establishing a shared business vocabulary, identifying and…
-
Data Architecture for Improved Dashboard Performance
Sometimes success seems like a data analytics team’s worst enemy. A few successful visualizations packaged up into a dashboard by a small skunkworks team can generate interest such that a year later the team has published scores of mission critical dashboards. As their use spreads throughout the organization, and as features expand to meet the…
-
Two Design Principles for Tableau Data Sources
It’s not unusual for talented teams of business analysts to find themselves maintaining significant inventories of Tableau dashboards. In addition to sound development practices, following two key principles in data source design help these teams spend less time in maintenance and focus more on building new visualizations: publishing Tableau data sources separately from workbooks and…
-
Data Governance Meets Procurement
Why pay good money for bad data? Of course no one would do that on purpose, but I as a consultant over many years I’ve often seen it. A vendor fulfills a contract to the letter, which unfortunately allows them to deliver required reports in various, sometimes changing, formats with suspect data quality. The customer…
-
Leadership Must Prioritize Data Quality
Data quality improvements follow specific, clear leadership from the top. Project leaders count data quality among project goals when senior management encourages them to do so with unequivocal incentives, a common business vocabulary, shared understanding of data quality principles, and general agreement on the objects of interest to the business and their key characteristics. Poor…
-
Leader’s Data Manifesto at #EDW19: Building a Foundation for Data Science
It’s been a truism that data is a resource, but to prove it you just have to follow the money. As the illustration shows, the vast majority of corporate market value draws from intangible assets. Just as money is an abstraction that represents wealth, data is an abstraction that represents these intangible assets. It’s year…
-
Data Integration Benefits? They’re Obvious.
“At least 84 percent of consumers across all industries say their experiences using digital tools and services fall short of expectations.”* That quote headed a recent article by David Roe on the role of data integration in digital workplace apps. However, the opening quote reflects the pervasive dearth of integrated data among the companies most of…
-
Start Data Quality Improvements with a New Definition
What is Data Quality anyway? If you are a data professional, I’m sure someone from outside our field has asked you that question, and if you’re like me you’ve fallen into the trap of answering in data-speak. To my listener, I’d guess that the experience was similar to having a customer service rep who has just…
-
Sound Data Culture Enables Modern Data Architectures
Modern data architectures, by enabling data analytics insights, promise to drive order of magnitude value gains across many business sectors (here, here, and here). Not so long ago, big data presented a daunting challenge. Although tools were plentiful, we struggled to conceptualize the architecture and organization within which to capitalize on those tools. Now solid…