Tag Archives: Database Design

To SQL or to NoSQL?

DiscDrivesRecently there was a great post at Dzone recounting how one “tech savvy startup” moved away from its NoSQL database management system to a relational one. The writer, Matt Butcher, plays out the reasons under these main points:

  1. Our data is relational
  2. We need better querying
  3. We have access to better resources

Summing up: “The bottom line: choose the right tool.” Continue reading

Thoughts on Healthcare Data Quality

The well-publicized problems with healthcare.gov are disturbing, especially when we remember they might result in many continuing without health insurance. Healthcare.govBut it seemed a step in the right direction when recent a news report differentiated between “front end” and “back end” problems. The back end problems were data issues, like a married applicant with two kids being sent to an insurer’s systems as a man with three wives.

Coincidently, I recently responded to a questionnaire about health care data. I’ve paraphrased the questions and my responses below. Perhaps the views of someone who’s spent a lot of time in the health care engine room might provide some useful perspective. Continue reading

Relational DB Pros: The Times They Are A-Changin’

Recently I read a thoughtful post DBQuestion
at the PASS Business Analytics Conference site discussing how different the world is now for database professionals. Author Chris Webb focuses on the data science side in this post. His analysis made me think of the challenges and opportunities “big data” serves up to relational database designers.

To me these challenges are fundamental. Big Data and NoSQL bring lots of what we know about data elements, inherent data design, and data management into question. I think considering these elements closely leads to a sensible to-do list for relational database professionals. Continue reading

Data Design Matters

OrderModelAs important as it is, data modeling has always had a geeky, faintly impractical tinge to some. I’ve seen application development projects proceed with a suboptimal, “good enough”, model. The resulting systems might otherwise be well-architected, but sometimes strange vulnerabilities emerge that track directly to data design flaws.

Recently I saw an example where a “good enough” data design, similar to the one pictured, enabled a significant application bug.

Continue reading

Skills of the Data Architect

One common theme in recent tectonic shifts in information technology is data management. Analyzing customer responses may require combing through unstructured emails and tweets. Timely analysis of web interactions may demand a big data solution. Deployment of data visualization tools to users may dictate redesign of warehouses and marts. The data architect is a key player in harnessing and capitalizing on new data technologies. Continue reading

Lessons from the puppy poster

In some presentations, I assert that top-down data modeling should result in not only a business-consistent model but also a pretty well normalized model.

One of the basic concepts behind normalization is functional dependency. In layperson’s terms, functional dependency means separating entities from each other and putting attributes into the obviously correct entity. For example, a business person knows that item color doesn’t belong in the order table because it describes the item, not the order. Everyone knows that the order isn’t green! Continue reading

Selected data modeling best practices

Recently I was in a conversation about data modeling standards. I confess that I’m not really the standards type.  I understand the value of standards and especially how important it is to follow them so others can interpret and use work products. It is just that I prefer to focus on understanding of the principles behind the standards. In general, it seems to me that following standards is trivial for someone who understand the principles, but impossible for someone who doesn’t. But there doesn’t seem to be general understanding of data modeling principles. Continue reading

Big Data opportunities and NoSQL challenges

As a relational database professional I couldn’t help but feel like something would be lost with the emergence of the new Big Data/NoSQL database management systems (DBMS). After about two years of buzz around the topic, I’m really excited about the emerging possibilities. However, I’m pretty sure we’ll miss the relational model’s strengths in requirements definition and conceptual design. Continue reading

A QlikView QuickStart: first steps for learning QlikView desktop

QlikTech’s QlikView reporting and analysis tool is among a new class of Business Intelligence (BI) software tools. As Ben Harden reported in a recent blog post, BI vendors like SAP, Microsoft, and IBM have traditionally sold “to the IT enterprise, but companies like QlikTech and Tableau are targeting the business and bypassing IT. Their tools are quicker to stand up, more intuitive and don’t need the configuration, support, and hardware that the bigger players require.”

A Quick Overview

At first look QlikView is fairly accessible to those experienced with BI tools. A “.qvw” QlikView file contains three classes of user-facing components: a script-based data integration language that runs when the user requests a “reload”, a data modeling component that looks deceptively like a relational data modeling tool, and a familiar array of data visualizations: graphics, charts, lists, etc.

Continue reading

Abstracting and recombining all the way to the bank

In the past I’ve never understood what people really mean they say “think outside the box” but Jim Harris, in a recent OCDQ blog post, helped me figure it out.

Mr. Harris ends with this provocative line: “the bottom line is Google and Facebook have socialized data in order to capitalize data as a true corporate asset.”  The post starts with a cold war analogy and proceeds to describe how Facebook and Google have made big money as “internet advertising agencies:” offering free services with which users (like us) serve up personal data in return for use of the service, then selling advertising space based on our data (hopefully anonymized).

Continue reading