Tag Archives: Data Modeling

Data Design Matters

OrderModelAs important as it is, data modeling has always had a geeky, faintly impractical tinge to some. I’ve seen application development projects proceed with a suboptimal, “good enough”, model. The resulting systems might otherwise be well-architected, but sometimes strange vulnerabilities emerge that track directly to data design flaws.

Recently I saw an example where a “good enough” data design, similar to the one pictured, enabled a significant application bug.

Continue reading

Skills of the Data Architect

One common theme in recent tectonic shifts in information technology is data management. Analyzing customer responses may require combing through unstructured emails and tweets. Timely analysis of web interactions may demand a big data solution. Deployment of data visualization tools to users may dictate redesign of warehouses and marts. The data architect is a key player in harnessing and capitalizing on new data technologies. Continue reading

Lessons from the puppy poster

In some presentations, I assert that top-down data modeling should result in not only a business-consistent model but also a pretty well normalized model.

One of the basic concepts behind normalization is functional dependency. In layperson’s terms, functional dependency means separating entities from each other and putting attributes into the obviously correct entity. For example, a business person knows that item color doesn’t belong in the order table because it describes the item, not the order. Everyone knows that the order isn’t green! Continue reading

Selected data modeling best practices

Recently I was in a conversation about data modeling standards. I confess that I’m not really the standards type.  I understand the value of standards and especially how important it is to follow them so others can interpret and use work products. It is just that I prefer to focus on understanding of the principles behind the standards. In general, it seems to me that following standards is trivial for someone who understand the principles, but impossible for someone who doesn’t. But there doesn’t seem to be general understanding of data modeling principles. Continue reading

Big Data opportunities and NoSQL challenges

As a relational database professional I couldn’t help but feel like something would be lost with the emergence of the new Big Data/NoSQL database management systems (DBMS). After about two years of buzz around the topic, I’m really excited about the emerging possibilities. However, I’m pretty sure we’ll miss the relational model’s strengths in requirements definition and conceptual design. Continue reading

A QlikView QuickStart: first steps for learning QlikView desktop

QlikTech’s QlikView reporting and analysis tool is among a new class of Business Intelligence (BI) software tools. As Ben Harden reported in a recent blog post, BI vendors like SAP, Microsoft, and IBM have traditionally sold “to the IT enterprise, but companies like QlikTech and Tableau are targeting the business and bypassing IT. Their tools are quicker to stand up, more intuitive and don’t need the configuration, support, and hardware that the bigger players require.”

A Quick Overview

At first look QlikView is fairly accessible to those experienced with BI tools. A “.qvw” QlikView file contains three classes of user-facing components: a script-based data integration language that runs when the user requests a “reload”, a data modeling component that looks deceptively like a relational data modeling tool, and a familiar array of data visualizations: graphics, charts, lists, etc.

Continue reading

Abstracting and recombining all the way to the bank

In the past I’ve never understood what people really mean they say “think outside the box” but Jim Harris, in a recent OCDQ blog post, helped me figure it out.

Mr. Harris ends with this provocative line: “the bottom line is Google and Facebook have socialized data in order to capitalize data as a true corporate asset.”  The post starts with a cold war analogy and proceeds to describe how Facebook and Google have made big money as “internet advertising agencies:” offering free services with which users (like us) serve up personal data in return for use of the service, then selling advertising space based on our data (hopefully anonymized).

Continue reading

Get an early start for on-time data modeling

I’m a data modeler, so I enjoyed Jonathon Geiger’s recent article entitled “Why Does Data Modeling Take So Long”.  But why does he say it like it’s a bad thing?

Mr. Geiger’s bottom line is exactly right: “Most of the time spent developing data models is consumed developing or clarifying the requirements and business rules and ensuring that the data structure can be populated by the existing data sources.”  On the projects he describes, no one took time before modeling to determine available data sources and identify business entities of interest, relationships among them, and attributes that describe them before database design started, so the data modeler had to do it.

Continue reading

Thoughts after agile training: strengthening values, reducing the cost of honesty, and growing apps

I recently completed ScrumMaster training ably presented by Lyssa Adkins. Throughout the two-day class we appreciated Lyssa’s Zen-like, enabling, style. If her name is familiar, it’s because Ms. Adkins is the author of the book Coaching Agile Teams, one of the leading texts on the subject.

I’ve participated on agile projects, but so far only in a piggish/chickenish role, once in a three-week stint as a consulting architect and twice as the project manager serving as interface to the non-agile organization.

To me Ms. Adkins rocks at making students very introspective and critical of their past project experiences.  These lessons stand out:

Continue reading

Metadata goals, ROI, and point solutions

Recently there has been a long, and very interesting, discussion of do-it-yourself versus third-party metadata tools on LinkedIn’s TDWI BI and DW discussion forum (membership required to follow the link). I have followed but haven’t commented, but I suppose I contributed when Information Management kindly published my article on DIY metadata.

The discussion is extremely informative, presenting the views of a variety of knowledgeable professionals in different situations, and describing successful and sometimes not-so-successful efforts to solve the essential metadata challenge: how to document what information is locked up in databases. Continue reading