A Short List of Accessible Big Data Training Options

As you’ve read on this site and many others, the database world is well into a transition from a relational focus to a focus on non-relational tools. While the relational approach underpins most organizations’ data management cycles, I’d venture to say that all have a big chunk of big data, NoSQL, unstructured data, and more in their five-year plans, and that chunk is what’s getting most of the executive “mind share”, to use the vernacular.

Some are well along the way in their big data learning adventure, but others haven’t started yet. One thing about this IT revolution is that there’s no shortage of highly accessible training options. But several people have complained to me about the sheer quantity of options, not to mention the sheer number of new words the novice needs to learn in order to figure out what the heck big data is.

So here’s a very short list of training options accessible to the IT professional who is a rank big data beginner, starting with a very brief classification of the tools that I hope provides a some context. Continue reading

What is Big Data Creativity and How Do You Get It?

Thomas EdisonIn a recent Smart Data Collective post, Bernard Marr cites creativity as a top big data skill, but what is creativity?

His point is, since big data applications are often off the beaten IT path, big data professionals must solve “problems that companies don’t even know they have – as their insights highlight bottlenecks or inefficiencies in the production, marketing or delivery processes,” often with “data which does not fit comfortably into tables and charts, such as human speech and writing.” Continue reading

Lynchburg SQL Server User’s Group 10/30

Liberty-UniversityYesterday I had the pleasure of presenting “The Business End of Data Modeling” for the Lynchburg SQL Server User’s Group. It was a great time, thanks for having me out!

I’ve linked the presentation below, please comment here or shoot me an email if you have comments or questions.


Get Business Requirements Right by Resolving Many-to-Manys

Logical data modeling is one of my tools of choice in business analysis and requirements definition. That’s not particularly unusual – the BABOK (Business Analysis Body of Knowledge) recognizes the Entity-Relationship Diagram (ERD) as a business analysis tool, and for many organizations it’s a non-optional part of requirements document templates.

In practice, however, data models in requirements packages often include many-to-many relationships. I’ve heard experienced data modelers advocate this practice, and it unfortunately seems consistent with the “just enough, just in time” approach associated with agile culture.

In my experience unresolved M:M relationships indicate equally unresolved business questions. The result: schedule delays and budget overruns as missed requirements are built back in to the design, or the familiar “that’s not what we wanted” reaction during User Acceptance Testing (UAT). Continue reading

A Field Guide to Overloaded Data

BugAt the very first TDWI Conference, Duane Hufford described a phenomenon he called “embedded data”, now more commonly called “overloaded data”, where two or more concepts are stuffed into a single data field (“Metadata Repositories,” TDWI Conference 1995). He described and portrayed in graphics three types of overloaded data. Almost 20 years later, overloaded data remains rampant but Mr Hufford’s ideas, presented below with updated examples, are unfortunately not widely discussed.

Overloaded data breeds in areas not exposed to sound data management techniques for one reason or the other. Big data acquisition typically loads data uncleansed, shifting the burden of unpacking overloaded fields to the receiver (pity the poor data scientist spending 70% of her time acquiring and cleaning data!)

One might refer to non-overloaded data as “atomic”. Beyond making data harder to use, overloaded data requires more code to manage than atomic data (see why in the sections below) so by extension it increases IT costs.

Here’s a field guide to three different types of overloaded data, associated risks, and how to avoid them: Continue reading

Requirements Half-Life

ThreeMileIslandI had pondered writing a post called “Requirements Decay” about how requirements don’t last forever. In my research I found that such a post, complete with “my” words “requirements decay” and “requirements half-life”, had already been done comprehensively here. In a compact argument underpinned by half-life mathematics, the anonymous author proposes that a requirement isn’t likely to stand unchanged forever and explores the implications.

For me, requirements decay is an idea that helps us think realistically about project planning and improves our chances of meeting business needs. Continue reading

Three things about “Interview with a Data Scientist”

Chemistry-labRecently, I posted “Interview with a Data Scientist” at my company’s blog site. In it, my friend and colleague Yan Li answers four questions about being a data scientist and what it takes to become one. In my view Yan’s responses provide a bracing reminder that data science is something truly new, but that it rests on universal principles of application development. Continue reading

To SQL or to NoSQL?

DiscDrivesRecently there was a great post at Dzone recounting how one “tech savvy startup” moved away from its NoSQL database management system to a relational one. The writer, Matt Butcher, plays out the reasons under these main points:

  1. Our data is relational
  2. We need better querying
  3. We have access to better resources

Summing up: “The bottom line: choose the right tool.” Continue reading

DIY Data Dictionary: ODBC Reporting from the ERwin Metamodel

Application developers and business people accessing relational databases need data dictionaries in order to properly load or query a database. The data dictionary provides a source of information about the model for those without model access, including entity/table and attribute/column definitions, datatypes, primary keys, relationships among tables, and so on. The data dictionary also provides data modelers with a useful cross reference that improves modeling productivity.

It is particularly useful for the dictionary to be a filterable/sortable Excel document, but out of the box ERwin, one of the leading data modeling tools, includes a notably inflexible reporting capability. Luckily, it is possible to directly query the ERwin “metamodel”. However, I found the ERwin documentation a bit hard to decipher and not quite accurate. Hopefully this post will save modelers some steps in figuring out how to query the metamodel.

Here are the topics covered:

  • ODBC drivers in the ERwin install
  • Reporting experience in MS Access, WinSQL, and MS Excel Continue reading

Technical Interviewers: Seek Opinions Not Facts

Asking fact questions in technical interviews is like eating a donut, feels great at the time but not so satisfying later.

Let’s say the interview consists of facts like this “softball question”: “What is the default port number for SQL Server?” The linked list of questions is a really good high level study guide for a SQL Server student. If a SQL Server developer candidate answers all correctly, then the interviewer can be confident that the candidate knows a lot about SQL Server. 

However, few development jobs require only technical fact knowledge. Typically, developers must apply creativity when working with unclear or poorly expressed requirements under tight schedules. They must be versatile so that they can take on unforeseen roles in case of resignations or transfers of team members. If you make an investment in an individual by hiring her or him, you’ll look for a return in the form of professional development as the individual grows their skills.

So how do you test creativity, versatility, and ability to learn, while still gauging raw technical talent? My method is to ask opinion rather than fact questions.  Continue reading