A New Direction for Data at #EDW17

Obviously, data management is important. Unfortunately, it is not prioritized in most organizations. Those that effectively manage data perform far better than organizations that don’t. Everyone who needs data to do his/her job must drive change to improve data management.

That was the theme of the recent Enterprise Data World (EDWorld) conference this week. This year’s EDWorld event might be the start of a new vitality and influence for the field, marked by introduction of a Leader’s Data Manifesto.

Over the years, data practitioners struggled for recognition and resources within their organizations. In reaction, they often focused on data “train wrecks” that this neglect causes. This year’s conference was no exception. For example: Continue reading

Tableau Rollout Across Five Dimensions

Standing up any new analytics tool in an organization is complex, and early on, new adopters of Tableau often struggle to include all the complexities in their plan. This post proposes a mental model in the form of a story of how Tableau might have rolled out in one hypothetical installation to uncover common challenges for new adopters.

Tableau’s marketing lends one to imagine that introducing Tableau is easy: “Fast Analytics”, “Ease of Use”, “Big Data, Any Data” and so on. (here, 3/31/2017). Tableau’s position in Gartner’s Magic Quadrant (referenced on the same page) attests to the huge upside for organizations that successfully deploy Tableau, which I’ve been lucky enough to witness firsthand. Continue reading

The Faith of Tolerance

Yes this is a post about religion, so at the outset let me assure you that I won’t try to talk you into or out of any religion or otherwise. Nor will I reveal my beliefs. Instead, I will make the case that the beliefs of others are to be celebrated.

To those thinking this is off-topic, the “about” page says that this site deals in “motivated professionals working together to solve problems.” In order to cooperate closely and harmoniously, co-workers must share values that foster mutual trust. IT teams tend to be diverse. In this time when some of our elected officials sow distrust it is important to remember the last of the agile team values listed by Scrum Alliance: “As we work together, sharing successes and failures, we come to respect each other and to help each other become worthy of respect.”

I was motivated to write this after accidentally finding Landon Fowler’s 2016 article called The Faith of Atheism. To briefly summarize the argument (Landon correct me if I mischaracterize): Continue reading

Analytics Requirements: Avoid a Y2.xK Crisis

Even though it happens annually, teams building new visualizations often forget to think about the effects of turning over from one year to another.

In today’s fast paced, Agile world, requirements for even the most critical dashboards and visualizations tend to evolve, and development often proceeds iteratively from a scratchpad sketch through successively more detailed versions to release of a “1.0” production version. Organized analytics teams evolve dashboards within a process framework that include checkpoints ensuring standards are met for security, reliability, usability, and so on.

A reporting team can build a revolutionary analytics capability enabling unprecedented visibility into operations, and then, if year turnover isn’t included in requirements, experience embarrassing errors and usability challenges in the January after initial deployment. In effect, the system experiences its own Y2.xK crisis, not too different from the expected Y2K crisis 16 years ago. Continue reading

Protect Your Culture: Screening for authoritarian project leaders

Bugs BunnyIt’s fashionable today to talk about the risks of authoritarianism in the political sphere. I’m not going to speculate on that, but such talk got me thinking about the same tendencies among IT project leaders. What is an authoritarian personality? (Yes, that’s actually a thing.) Is it truly antithetical to a healthy project? If so, how can you screen for it in hiring?

Recently, ArsTechnica ran an article that offers a survey of research on authoritarian personalities conducted since the 1940s. The bottom line for us is that those with authoritarian tendencies more often Continue reading

More on the Agile Architect: Process and Knowledge Transfer

webscrum_2444372bI’ve written about groupthink-related quality challenges on Agile projects, and the architect’s role in preventing groupthink from degrading quality. I’ve seen other risks related to the cohesion and potential insularity of successful Agile teams, and the architect is also well positioned to help prevent these: a tendency to neglect setting up and documenting repeatable processes, and a similar tendency not to share of knowledge and lessons learned outside the Agile team. Continue reading

Tableau Startup: First Lessons Learned

XAs I mentioned in the February post, I’m new to Tableau, and as the tone of that post implied,enjoying it very much. Tableau is a robust and flexible solution for data delivery. Like Qlikview, which I worked with a while ago, it is supported by outstanding, and free, introductory training and a very active user community.

As I’ve made my first steps in Tableau I’ve been a frequent user community visitor, and generally have gotten the answers I’ve been looking for. However, like any tool there still have been a few surprises. I’ll run down the top few in this post:

  • Measures can have complex logic
  • Big extracts are tricky
  • Changing data sources is really tricky
  • Sorry, there are some things you just can’t do

Hopefully this post helps other novices negotiate those first few steps a bit more easily. Continue reading

No Silver BI Bullet: Tableau Edition (It’s a good thing!)

For complex work, a very simple app requires a very smart user. That point was driven home to me in Tableau Fundamentals class this week. I don’t see that as bad news at all.

Not so long ago I wrote a piece that attempted to inject a bit of reality into the claims then made by some data visualization tool vendors. I cited unexpected challenges that those adopting such tools for their obvious and compelling data presentation abilities might face. The challenges included unexpectedly complex data integration, establishing solid reporting standards and practices, scaling report distribution as demand for the visualizations expands, and the conversion work that can result from version upgrades.

Although a Fundamentals class, the experienced and enthusiastic instructor and the small, intelligent student group combined to make the two days immensely valuable, going far beyond the basics on the program (more on specific lessons learned will appear in an upcoming post). The instructor’s focus on principles rather than recipes drove home this point: in order to effectively use Tableau you have to understand not only how to operate Tableau itself but also the underlying data management, usability, and statistics principles.

Could it be that adopting easy-to-use Tableau in place of, say, SSRS, Cognos, or SAS requires an upgrade in staff knowledge and expertise? Continue reading

Levels of Trust in Data Governance: It’s Not All or Nothing

The term “trust” implies absolutes, and that’s a good thing for relationships and art. However, in the business of data management, framing trust in data in true or false terms puts data governance at odds with good practice. A more nuanced view that recognizes the usefulness of not-fully-trusted data can bring vitality and relevance to data governance, and help it drive rather than restrict business results.

The Wikipedia entry — for many a first introduction to data governance — cites Bob Seiner’s definition: “Data governance is the formal execution and enforcement of authority over the management of data and data related assets.” The entry is accurate and useful, but words like “trust”, “financial misstatement”, and “adverse event” lead the reader to focus on the risk management role of governance.

However, the other role of data governance is to help make data available, useful, and understood. That means sometimes making data that’s not fully trusted available and easy to use. Continue reading

Five Thoughts On Data Management Maturity

StaircaseRecently I’ve had the opportunity to dig deeply into the CMMI Data Management Maturity model. Since its release, the DMM model has emerged as the de facto standard data management maturity framework (I’ve listed other frameworks at the end of this post).

I’m deeply impressed by the completeness and polish of the DMM model as a comprehensive catalog of processes required for effective data management. Even after decades in the business the broad scope and business focus of the model changed the way I think about data management.

Here are my impressions collected under five distinct categories. Continue reading